Autosomal Dominant Polycystic Kidney Disease & PKD1

Elizabeth Roeske

Genetics 564

April 24th, 2014

What is Polycystic Kidney Disease?

Polycystin-I is mutated in polycystic kidney disease

Nature Reviews | Molecular Cell Biology

Polycystin-I is well conserved

HUMAN	PKD 937-2135		PKD channel 3711-4113 4303	
MOUSE	PKD 932-2131		PKD channel 3701-4103 4293	85%
			3701 4103	F.40/
ZEBRAFISH	PKD 657-1663		4097 4097	56%
C. ELEGANS		PKD channel 2721-3175	3284	57%
RHESUS MONKI	EY PKD 694-1549	PKD chan 2628-303	2220	94%

Cysts accumulate throughout lifetime

PRIMARY GOAL: to determine the role of PKD1 in development

PKD1 is important for development

Kidney Development

- Mesonephronic duct development
- Metanephric distal tubule morphogenesis
- Metanephric collecting duct development
- Metanephric ascending thin limb development
- Branching morphogenesis of an epithelial tube
- Mesonephric tubule development

Neural tube development

Lung epithelium development

Liver development

Digestive tract development

Skin Development

AIM I:To determine the expression pattern of PKDI in different developing tissues

Approach: Microarray

	EARLY DEVELOPMENT	LATE DEVELOPMENT
KIDNEY		
LIVER		
SKIN		
LUNG		
DIGESTIVE		
TRACT		

I expect that PKDI will be expressed at high levels in the kidney and in low levels in other tissues during development

Expression level:

High

Low

Absent

AIM 2: To determine whether knockdown of other kidney development genes can cause cystic kidneys

Approach: RNAi Screen

Add zebrafish embryos to 96-well plates with RNAi against genes associated with kidney function

Screen for cystic kidneys

I expect that cysts will develop upon knock-down of development-related PKDI interaction partners

AIM 3:To determine if protein interactions with polycystin-I are different in young and old zebrafish

Approach: TAP-Tag

I expect that proteins that interact with polycystin-I will be different in young and old embryos

Polycystin-I interactors in young zebrafish

Polycystin-I interactors in old zebrafish

Summary

PRIMARY GOAL: to determine the role of PKD1 in development

Questions?

References

- [1] Gabow, P. (1993). Autosomal dominant polycystic kidney disease. The New England Journal of Medicine. 329(5) 332-342.
- [2] Fedeles, S.V., Gallagher, A-R., Stefan Somlo.
 (2014) Polycystin-1: A master regulator of intersecting cystic pathways. Trends in Molecular Medicine. E-pub ahead of print. Doi: 10.1016/j.molmed.2014.01.004
- [3] Reeders, S. T. et al. Prenatal diagnosis of autosomal dominant polycystic kidney disease with a DNA probe. Lancet 2, 6–8 (1986).